APPENDIX D Wetland Report

Wetland Delineation Report

Syracuse Hancock International Airport Land Release

Town of Salina Onondaga Co., New York

CHA Project Number: 077036

Prepared for:

Syracuse Regional Airport Authority 1000 Col. Eileen Collins Blvd. Syracuse, NY 13212

Prepared by:

Albany, NY, 12205 Phone: (518) 453-8211 Fax: (518) 453-4773

November 20, 2023

SIGNATURE PAGE

This report has been prepared and reviewed by the following qualified personnel employed by CHA.

Report Prepared By:

Nicole Frazer

Principal Scientist

Report Reviewed By:

Christopher Einstein, PWS

Principal Scientist

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	PROJECT AREA DESCRIPTION	1
2.0	METHODOLOGY	1
3.0	INVESTIGATION RESULTS	2
3.1	RESOURCE REVIEW	2
3.1.1		
3.1.2	NYSDEC Freshwater Wetlands Map	3
3.1.3	National Wetland Inventory (NWI) Map	3
3.1.4	Soil Survey Map	3
3.1.5	FEMA Floodplain Map	4
3.1.6		
3.2	FIELD INVESTIGATION	4
3.2.1	Vegetative Communities	4
3.2.2	Discussion of Terrestrial Communities	5
3.2.3	Discussion of Wetlands and Waterbodies	6
4.0	SUMMARY	6
	LIST OF TABLES	
Table	4-1. Wetlands	6

LIST OF ATTACHMENTS

Attachment A Figures Attachment B Wetland Delineation Map

Attachment C Wetland Determination Data Forms

Attachment D Site Photographs

Attachment E Antecedent Precipitation Tool

LIST OF ACRONYMS & ABBREVIATIONS

AC Acres

CWA Clean Water Act

FEMA Federal Emergency Management Agency

FWW Freshwater Wetland
HUC Hydrologic Unit Code
JD Jurisdictional Determination

NRCS Natural Resources Conservation Service

NWI National Wetlands Inventory

NYSDEC New York State Department of Environmental Conservation

SF Square Foot

SYR Syacuse Hancock International Airport

TNW Traditional Navigable Waters

USACE United States Army Corps of Engineers USFWS United States Fish and Wildlife Service

USGS United States Geological Survey

1.0 INTRODUCTION

The project area is located on the west side of the Syacuse Hancock International Airport (SYR), in the Town of Salina, Onondaga County, New York (Attachment A). The jurisdictional determination (JD) area totals 46 acres. The approximate center point coordinates of the project area are Latitude 43° 06' 52.42"N; Longitude 76° 07' 31.90"W.

The purpose of this report is to document the wetland community and its boundary within the project area. The wetland has been identified on the Wetland Delineation Map (Attachment B). The report includes a general description of the project area, ecology, wetland description and is complimented by wetland determination data forms (Attachment C) and site photographs (Attachment D).

CHA was retained to delineate and describe the wetlands within the project area that may be regulated by the United States Army Corps of Engineers (USACE) under Section 404 of the Clean Water Act (CWA). The wetland delineation was conducted by Nicole Frazer, Principal Scientist and Cole Scrivner, Environmental Scientist on November 7, 2023.

1.1 PROJECT AREA DESCRIPTION

The project area is within airport property. The project area consists of pavement, mowed lawn with trees, mowed lawn (airfield), emergent wetland (shallow emergent marsh), successional shrubland and successional northern hardwoods.

2.0 METHODOLOGY

The project area was evaluated in accordance with the procedures provided in the 1987 Corps of Engineers Wetland Delineation Manual and the Regional Supplement to the Corps of Engineers Wetland Manual: Northcentral and Northeast Region version 2.0 (January 2012). The "Routine Wetland Determination" method was used.

The wetland boundary was determined in the field based on the three-parameter approach, whereby an area is a wetland if it exhibits vegetation adapted to wet conditions (hydrophytes), hydric soil indicators, and the presence or evidence of water at or near the soil surface during the growing season (hydrology).

Coded surveyor's ribbons (e.g., flag code A-1, A-2, etc.) were placed along the wetland boundary based on observations of vegetation, soils and hydrologic conditions. Delineation flags were GPS located.

Data points were recorded along the wetland boundary. Wetland and upland data points were recorded to show the difference between the wetland and upland habitat. Additionally, points were taken to document the upland conditions of the successional northern hardwoods and successional shrubland community types in the northwest corner of the project area. Wetland determination data forms can be found in Attachment C.

Representative photographs of the wetland and upland portions of the project area are provided in Attachment D.

Vegetative community types within the project area are described according to *Ecological Communities of New York State, Second Edition* (Edinger 2014)¹ and *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin 1979)².

The Antecedent Precipitation Tool identified that the drought index (PDSI) was mild wetness and that the delineation was performed under drier than normal conditions (index score of 7) (Attachment E).

3.0 INVESTIGATION RESULTS

3.1 RESOURCE REVIEW

Prior to visiting the project area, various maps and other sources of background information were reviewed. These included the following:

• United States Geological Survey (USGS) 7.5-minute Topographic Map

¹ Edinger, G. J., D. J. Evans, S. Gebauer, T. G. Howard, D. M. Hunt, and A. M. Olivero (editors). 2014. *Ecological Communities of New York State*. Second Edition. A revised and expanded edition of Carol Reshke's *Ecological Communities of New York State*. New York Natural Heritage Program, New York State Department of Environmental Conservation, Albany, NY.

² Cowardin, L. M., V. Carter, F. C. Golet, E. T. LaRoe, 1979. *Classification of wetlands and deepwater habitats of the United States*. U. S. Department of the Interior, Fish and Wildlife Service, Washington, D.C.

- New York State Department of Environmental Conservation (NYSDEC) Freshwater Wetlands (FWW) Map
- United States Fish and Wildlife Service (USFWS), National Wetlands Inventory (NWI) map
- Natural Resources Conservation Service (NRCS) Soil Survey for Onondaga County
- Federal Emergency Management Agency (FEMA) Flood Zone Map

Refer to Attachment A for each of these figures.

3.1.1 USGS Topographic Map

According to the USGS Topographic Map, the project area is within the limits of the airport and is located along Colonel Eileen Collins Boulevard. The topography is flat.

3.1.2 NYSDEC Freshwater Wetlands Map

Review of the NYSDEC freshwater wetlands map did not identify any mapped state regulated wetlands or associated 100-foot Adjacent Areas within the project area.

3.1.3 National Wetland Inventory (NWI) Map

Review of the NWI map did not identify any mapped wetlands within the project area.

3.1.4 Soil Survey Map

Soil descriptions were obtained from the NRCS Web Soil Survey. This information was used in conjunction with on-site soil sampling to determine the presence of hydric soils. The following soils are mapped as occurring within the project area:

- Croghan loamy fine sand (CrB), 0-6% slopes- This soil is moderately well drained. The depth to water table is about 18 to 24 inches and the depth to restrictive feature is more than 80 inches. This soil is not rated as a hydric soil.
- Minoa fine sandy loam (MtA), 0-2 % slopes- This soil is somewhat poorly drained. The depth to water table is about 6 to 18 inches and the depth to restrictive feature is more than 80 inches. This soil is not rated as a hydric soil.

- Naumburg loamy fine sand (Na), 0-2% slopes- This soil is somewhat poorly drained and poorly drained. The depth to water table is about 6 to 12 inches and the depth to restrictive feature is more than 80 inches. The somewhat poorly drained soil is not rated as a hydric soil and the poorly drained soil is rated as a hydric soil.
- Urban land (Ub)- The information provided above for the other soil types, is not included in the soil survey for this soil type.

3.1.5 FEMA Floodplain Map

Based on review of the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map, no areas of 100-year floodplain are mapped within the project area.

3.1.6 Hydrology

The water quality of surface waters in New York State are classified by the NYSDEC as either "AA", "A," "B", "C", or "D". Water quality standards for discharges to a classified stream, river, lake, or other water body accompany each classification. A "(T)" or "(TS)" used with the water quality standard indicates that the stream supports, or may support, a trout population. All streams and water bodies with a water quality standard of C(T) or higher are regulated by the NYSDEC under Article 15 Protection of Waters as are navigable waters.

There are no streams within the project area. The nearest Traditional Navigable Water (TNW) is Onondaga Lake. The aerial miles from the project site to Onondaga Lake are approximately 3.6.

The Hydrologic Unit Codes (HUC) for the project area are 041402020902 (Mud Creek) and 041402011509 (Onondaga Lake).

3.2 FIELD INVESTIGATION

3.2.1 Vegetative Communities

Ecological communities within the project area include mowed lawn with trees, mowed lawn (airfield), emergent wetland (PEM), successional shrubland and successional northern hardwoods. Descriptions of these areas are provided below.

3.2.2 Discussion of Terrestrial Communities

Mowed lawn with trees – This mowed roadside area is along Colonel Eileen Collins Boulevard and is dominated by Kentucky blue grass (*Poa pratensis*) with a row of thornless honey locust trees (*Gleditsia triacanthos* var. *inermis*).

Mowed lawn (airfield)- These areas are associated with the airfield and are dominated by grasses such as Kentucky blue grass. Other species present in lesser occurrences include species such as bird's foot trefoil (*Lotus corniculatus*), queen Anne's lace (*Daucus carota*), English plantain (*Plantago lanceolata*), common plantain (*Plantago major*), white clover (*Trifolium repens*), red clover (*Trifolium pratense*), northern bedstraw (*Galium boreale*), cow vetch (*Viccia cracca*), dandelion (*Taraxacum officinale*), field mint (*Mentha arvensis*), strawberry (*Fragaria virginiana*), northern dewberry (*Rubus flagellaris*), sulphur cinquefoil (*Potentilla recta*), scouring rush (*Equisetum hymale*), yellow foxtail (*Setaria pumila*), spotted knapweed (*Centaurea stoebe*), white campion (*Silene latifolia*), butter-and-eggs (*Linaria vulgaris*), yarrow (*Achillea millefolium*), chicory (*Cichorium intybus*), daisy fleabane (*Erigeron annuus*), white sweet clover (*Melilotus albus*) and hoary alyssum (*Berteroa incana*).

Successional shrubland-This area is located in the northwest corner of the project area. The dominant shrub in this area is quaking aspen (*Populus tremuloides*). Other shrub species present include gray dogwood (*Cornus racemosa*), morrow's honeysuckle (*Lonicera morrowii*), staghorn sumac (*Rhus typhina*), blackberry (*Rubus allegheniensis*) and black raspberry (*Rubus occidentalis*). The herbaceous layer contains species such as blackberry, morrow's honeysuckle and tall goldenrod (*Solidago altissima*).

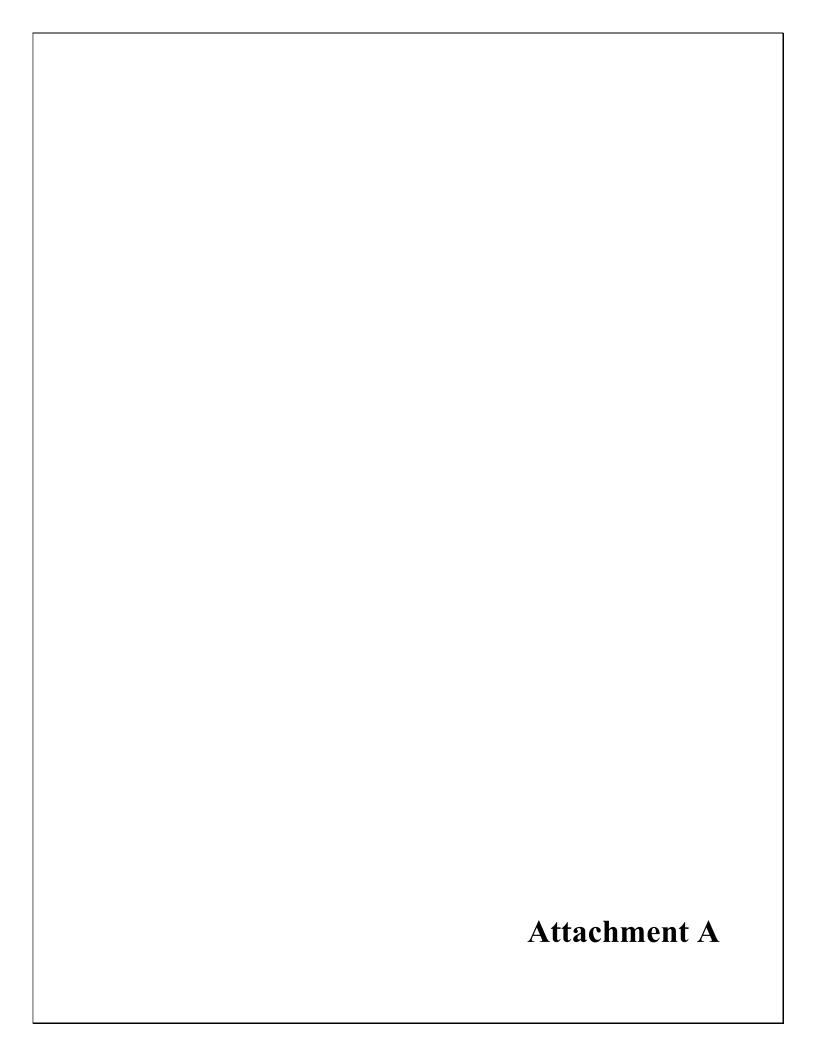
Successional northern hardwoods- This area is also located in the northwest corner of the project area. The dominant trees in this area are quaking aspen and black cherry (*Prunus serotina*). Sugar maple (*Acer saccharum*) is also present in lesser occurrences. The shrub layer is dominated by quaking aspen and morrow's honeysuckle. Other shrubs present include black cherry, red oak (*Quercus rubra*), buckthorn (*Rhamnus cathartica*), staghorn sumac and gray dogwood. The herbaceous layer contains species such as tall goldenrod, morrow's honeysuckle and pokeweed (*Phytolacca americana*). Vines present include poison ivy (*Toxicodendron radicans*), summer grape (*Vitis aestivalis*) and bittersweet (*Celastrus orbiculatus*).

3.2.3 Discussion of Wetlands and Waterbodies

The identified wetland is described below. No waterbodies were identified within the project area. Refer to Attachment B for the Wetland Delineation Map.

Wetland A – Wetland A is an isolated shallow emergent marsh (PEM) that is dominated by path rush (*Juncus tenuis*) with lesser occurrences of yellow nut sedge (*Cyperus esculentus*).

Observed hydrology indicators included Surface Water (A1), Oxidized Rhizospheres on Living Roots (C3) and Geomorphic Position (D2). The hydric soil indicator is Depleted Below Dark Surface (A11).

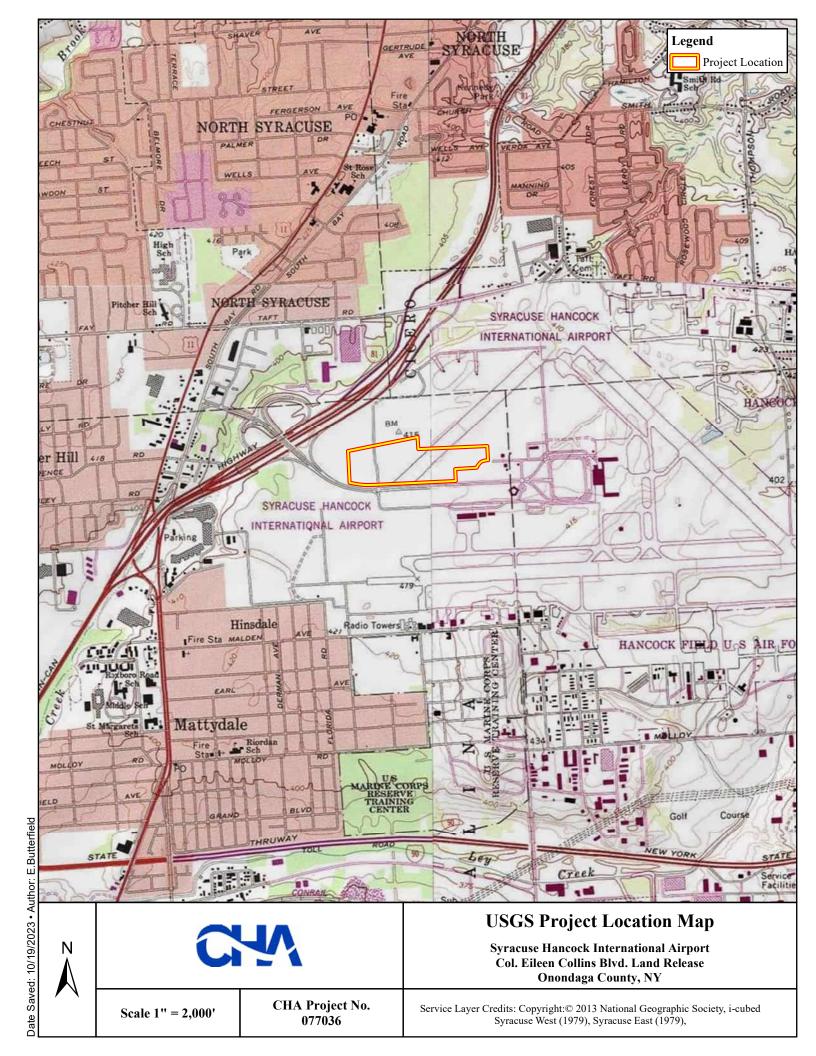

The total size of Wetland A is approximately 0.17 acres. This wetland is a small depression, has no inlet or outlet and no connection to tributaries or adjacent wetlands. Wetland A is not adjacent to a TNW, territorial sea, or interstate water. Wetland A is also not adjacent to a water defined as relatively permanent, standing or continuously flowing and does not have a continuous surface connection to those waters. Wetland A is presumed to be non-jurisdictional based on review of the current definition of Waters of the United States as described above.

4.0 SUMMARY

CHA delineated wetlands within an approximately 46-acre project area located in the Town of Salina, Onondaga County, New York. The following table provides the ecological community type for the wetland, size of the feature within the project area and the likely regulatory jurisdiction.

Table 4-1 – Wetlands

FEATURE	COMMUNITY TYPE	SIZE (SF/AC)	JURISDICTION
Wetland A	Shallow Emergent Marsh (PEM)	7,374 SF/ 0.17 AC	Non-jurisdictional
TOTAL		7,374 SF/ 0.17 AC	

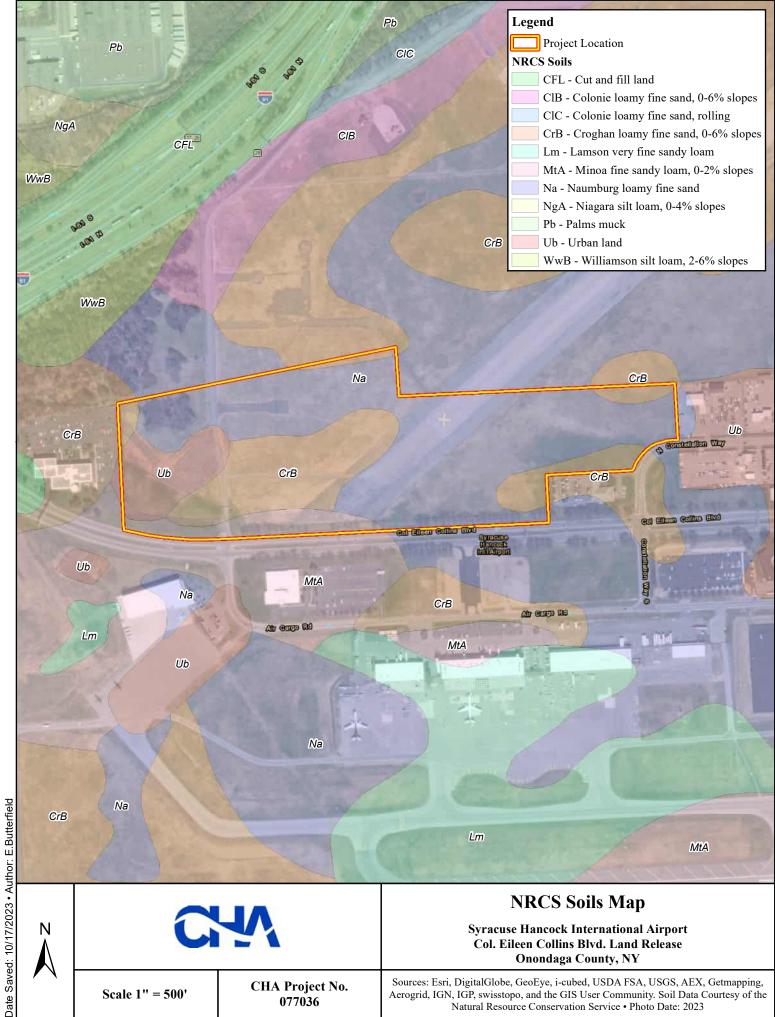

Project Area Map

Syracuse Hancock International Airport Col. Eileen Collins Blvd. Land Release Onondaga County, NY

Scale 1" = 600'

CHA Project No. 077036

Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community • Photo Date: 2023


Wetlands Map

Syracuse Hancock International Airport Col. Eileen Collins Blvd. Land Release Onondaga County, NY

Scale 1" = 600'

CHA Project No. 077036

Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. National Wetlands Inventory produced by the U.S. Fish and Wildlife Service • Photo Date: 2023

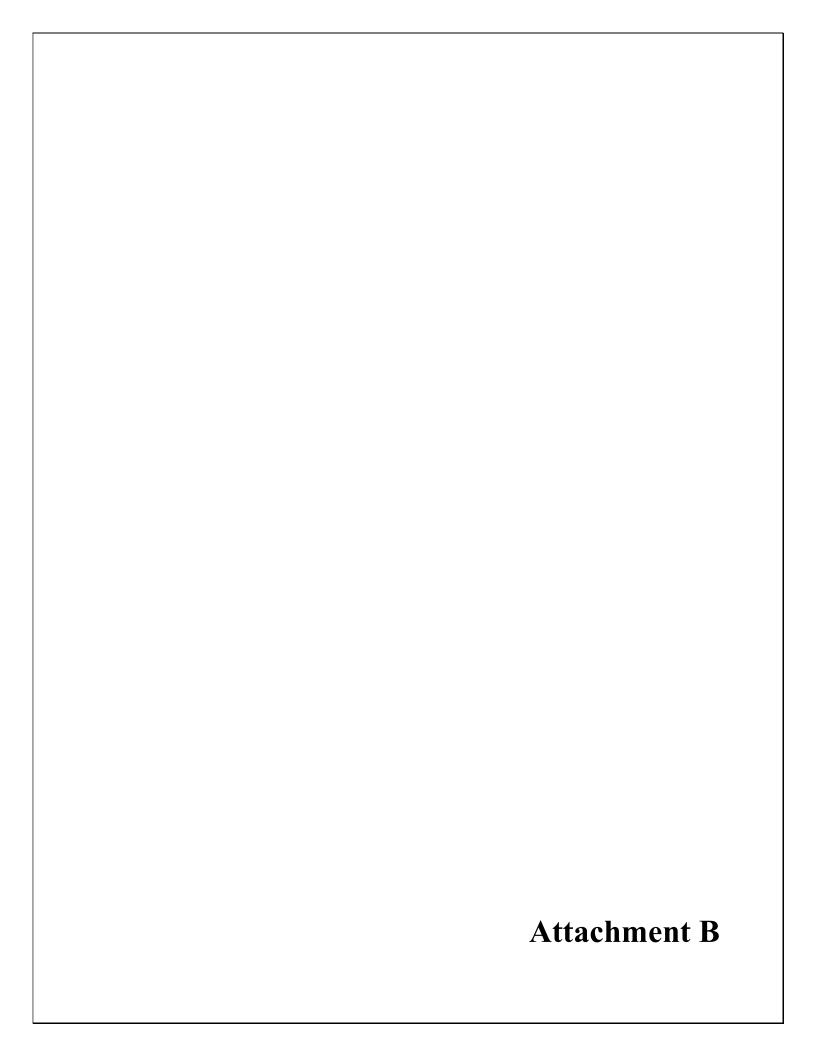
Scale 1" = 500'

CHA Project No. 077036

Col. Eileen Collins Blvd. Land Release Onondaga County, NY

Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Soil Data Courtesy of the Natural Resource Conservation Service • Photo Date: 2023

FEMA Floodzone Map

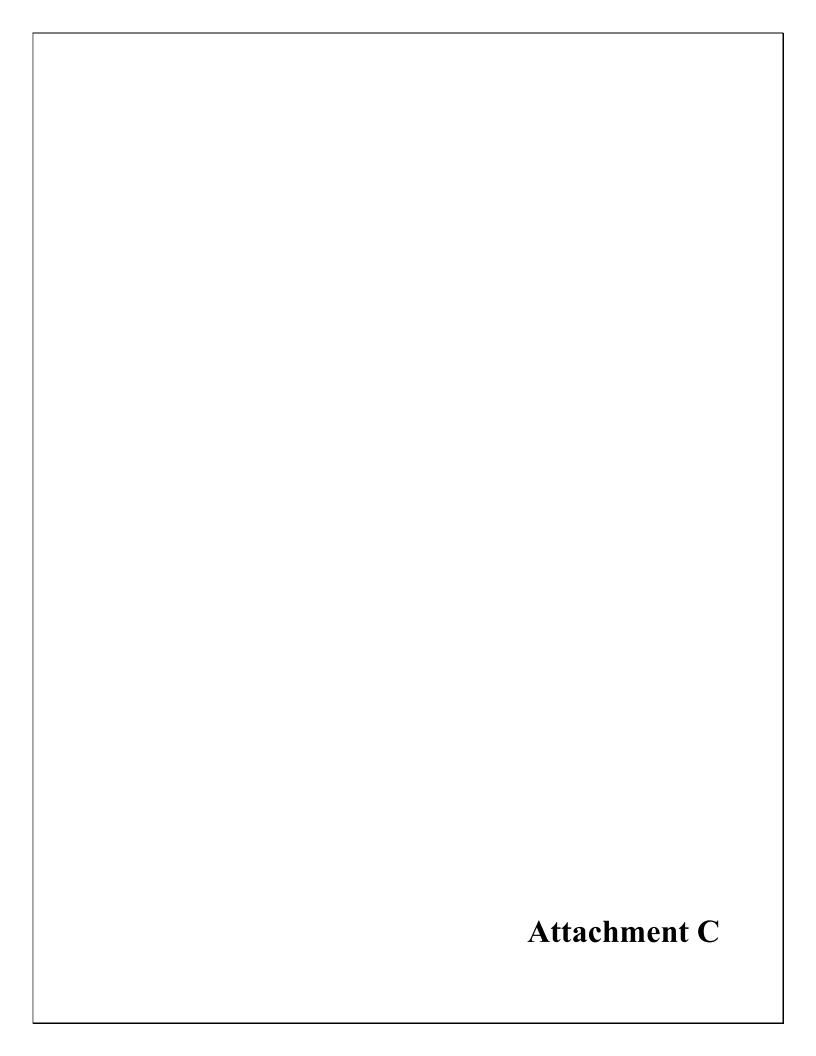

Syracuse Hancock International Airport Col. Eileen Collins Blvd. Land Release Onondaga County, NY

Scale 1" = 600'

CHA Project No. 077036

Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Floodzones courtesy of the Federal Emergency Managment Agency (FEMA) • Photo Date: 2023

Date Saved: 10/19/2023 • Author: E.Butterfield


Scale 1'' = 200'

CHA Project No. 077036

Wetland Delineation Map

Syracuse Hancock International Airport Col. Eileen Collins Blvd. Land Release Onondaga County, NY Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. National Wetlands Inventory produced by the U.S. Fish and Wildlife Service • Photo Date: 2023

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region

See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R

OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Syracuse Hancock International Airport	City/County: Salir	na/ Onondaga	Sampling Date: 11/7/23			
Applicant/Owner: Syracuse Regional Airport Authority		State: NY	Sampling Point: A-8 wet			
Investigator(s): N. Frazer & C. Scrivner		Township, Range:	<u> </u>			
Landform (hillside, terrace, etc.): depression	Local relief (concave, cor	nvex, none): concave	Slope %: 0			
· · · · · · · · · · · · · · · · · · ·		ng: -76.127722	 Datum: WGS84			
Soil Map Unit Name: MtA- Minoa fine sandy loam	0.110.00	NWI classification:	PEM			
Are climatic / hydrologic conditions on the site typical for th	is time of year? Yes	x No (If no, e	explain in Remarks.)			
Are Vegetation, Soil, or Hydrologys		ormal Circumstances" prese				
Are Vegetation , Soil , or Hydrology n		ded, explain any answers in				
SUMMARY OF FINDINGS – Attach site map s			•			
Outmant of Thiblitoo - Attach site map			iportaint leatures, etc.			
	No Is the Sampleo					
	No within a Wetlan		No			
Wetland Hydrology Present? Yes X		Wetland Site ID:				
Remarks: (Explain alternative procedures here or in a sep	parate report.)					
Mowed isolated shallow emergent marsh.						
HYDROLOGY						
Wetland Hydrology Indicators:		Secondary Indicators (n	ninimum of two required)			
Primary Indicators (minimum of one is required; check all	that apply)	Surface Soil Cracks				
X Surface Water (A1) Water-S	Stained Leaves (B9)	Drainage Patterns (B10)				
High Water Table (A2) Aquatic	Fauna (B13)	Moss Trim Lines (B	16)			
Saturation (A3) Marl De	eposits (B15)	Dry-Season Water ⁻	Table (C2)			
Water Marks (B1) Hydrogo	en Sulfide Odor (C1)	Crayfish Burrows (C	28)			
Sediment Deposits (B2) X Oxidize	ed Rhizospheres on Living Roots (C	3) Saturation Visible o	n Aerial Imagery (C9)			
Drift Deposits (B3) Present	ce of Reduced Iron (C4)	Stunted or Stressed	l Plants (D1)			
Algal Mat or Crust (B4) Recent	Iron Reduction in Tilled Soils (C6)	X Geomorphic Positio	n (D2)			
	uck Surface (C7)	7) Shallow Aquitard (D3)				
Inundation Visible on Aerial Imagery (B7)Other (I	Explain in Remarks)	arks)Microtopographic Relief (D4)				
Sparsely Vegetated Concave Surface (B8)		FAC-Neutral Test (D5)			
Field Observations:						
Surface Water Present? Yes x No	Depth (inches): 0.5					
Water Table Present? Yes No x	Depth (inches):					
Saturation Present? Yes No x		land Hydrology Present?	Yes <u>X</u> No			
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well,	aerial photos, previous inspections)	, if available:				
D						
Remarks:						

VEGETATION – Use scientific names of plants. Sampling Point: A-8 wet Absolute Dominant Indicator Tree Stratum (Plot size: _____30' ____) % Cover Species? Status **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: (A) 3. Total Number of Dominant 4. Species Across All Strata: 1 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: Sapling/Shrub Stratum (Plot size: 15' **OBL** species x 1 = **FACW** species 18 x 2 = 36 2. 75 FAC species x 3 = 225 10 x 4 = 3. FACU species 40 0 4. UPL species x 5 = 0 5. Column Totals: 103 ___ (A) 301 Prevalence Index = B/A = 2.92 6. **Hydrophytic Vegetation Indicators:**

		_=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size:5')				X 2 - Dominance Test is >50%
1. Juncus tenuis	75	Yes	FAC	X 3 - Prevalence Index is ≤3.0 ¹
2. Cyperus esculentus	18	No	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3. Poa pratensis	10	No	FACU	data in Remarks or on a separate sheet)
4.		_		Problematic Hydrophytic Vegetation ¹ (Explain)
5 6.		_		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8 9				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12	103	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30') 1.				Woody vines – All woody vines greater than 3.28 ft in height.
2				Undrombudio
3	-	_		Hydrophytic Vegetation
4		_		Present? Yes X No No
		_=Total Cover		
Remarks: (Include photo numbers here or on a separ	rate sheet.)		-

SOIL Sampling Point A-8 wet

Profile Desc Depth	ription: (Describe t Matrix	to the de		ıment th x Featur		ator or co	onfirm the absence of	findicators.)	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-7	10YR 2/1	100					Loamy/Clayey	with organics	
7-18	10YR 4/1	82	10YR 5/4	10	C	<u>M</u>	Sandy	Distinct redox concentration	ns
			2.5YR 3/6	8	С	PL/M		Prominent redox concentrati	ons
		etion, RN	/I=Reduced Matrix, M	IS=Masl	ked San	d Grains.		L=Pore Lining, M=Matrix.	
Hydric Soil I								or Problematic Hydric Soils ³ :	
— Histosol			Dark Surface (\$		(00) (2 cm Muck (A10) (LRR K, L, MLRA 149B)		
Black His	ipedon (A2)		Polyvalue Belo		ce (58) (LKK K,	Coast Prairie Redox (A16) (LRR K, L, R) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R)		
	n Sulfide (A4)		•	,	(I RR R	MIRA			
	Layers (A5)		Thin Dark Surface (S9) (LRR R, MLRA 1 High Chroma Sands (S11) (LRR K, L)				Thin Dark Surface (S9) (LRR K, L)		
	Below Dark Surface	(A11)	Loamy Mucky Mineral (F1) (LRR K, L)				Iron-Manganese Masses (F12) (LRR K, L, R)		
	rk Surface (A12)	, ,	Loamy Gleyed			,	Piedmont Floodplain Soils (F19) (MLRA 149B)		
Mesic Sp	oodic (A17)		Depleted Matrix	к (F3)			Red Parent Material (F21) (outside MLRA 145)		
	A 144A, 145, 149B)		Redox Dark Surface (F6)				Very Shallow Dark Surface (F22)		
	ucky Mineral (S1)		Depleted Dark				Other (E	xplain in Remarks)	
	leyed Matrix (S4)		Redox Depress		8)		3, ,,		
	edox (S5) Matrix (S6)		Marl (F10) (LR		24) (MI I	DA 145\	³ Indicators of hydrophytic vegetation and wetland hydrology must be present,		
Stripped	Matrix (30)		Red Parent Material (F21) (MLRA 145)				unless disturbed or problematic.		
Restrictive L	ayer (if observed):							alotarboa or problematic.	
Type:	none	е							
Depth (in	nches):						Hydric Soil Preser	nt? Yes X No	
Remarks:							•		

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region

See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R

OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Syracuse Hancock International	al Airport	City/County: Salina/	Onondaga	Sampling Date: 11/7/23			
Applicant/Owner: Syracuse Regional Air	port Authority		State: NY	Sampling Point: A-8 upl			
Investigator(s): N. Frazer & C. Scrivner		Section, To	wnship, Range:	<u> </u>			
Landform (hillside, terrace, etc.): flat	Local re	elief (concave, conve	ex. none): none	Slope %: 0			
Subregion (LRR or MLRA): LRR L	Lat: 43.113878		-76.127907	 Datum: WGS84			
Soil Map Unit Name: CrB-Croghan loamy fir		== \$	NWI classification:				
Are climatic / hydrologic conditions on the site		Yes x		explain in Remarks.)			
			`	•			
Are Vegetation, Soil, or Hydro			nal Circumstances" pres				
Are Vegetation, Soil, or Hydro	<u> </u>		d, explain any answers ir	·			
SUMMARY OF FINDINGS – Attach	site map showing sam	pling point loca	tions, transects, in	nportant features, etc.			
Hydrophytic Vegetation Present?	Yes No X	Is the Sampled A	rea				
Hydric Soil Present?	Yes X No	within a Wetland	? Yes	No X			
Wetland Hydrology Present?	Yes No X	If yes, optional We	etland Site ID:				
Remarks: (Explain alternative procedures he	ere or in a separate report.)						
Mowed airfield.							
HYDROLOGY							
Wetland Hydrology Indicators:				minimum of two required)			
Primary Indicators (minimum of one is require			Surface Soil Crack				
Surface Water (A1)	Water-Stained Leaves (B	39)	Drainage Patterns				
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)					
— Water Marks (B1)	Hydrogen Sulfide Odor (0	•	Crayfish Burrows (•			
Sediment Deposits (B2)	Oxidized Rhizospheres o	= : :		on Aerial Imagery (C9)			
Drift Deposits (B3)	Presence of Reduced Iro	` '	Stunted or Stresse				
Algal Mat or Crust (B4)	Recent Iron Reduction in	· · · · · · · · · · · · · · · · · · ·					
Iron Deposits (B5)	Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7	· · · · · · · · · · · · · · · · · · ·	(s)	Microtopographic F				
Sparsely Vegetated Concave Surface (E	38) 		FAC-Neutral Test ((D5)			
Field Observations:	··						
Surface Water Present? Yes	No x Depth (inches):						
Water Table Present? Yes	No x Depth (inches):		Usadas Isaay Duon onto	V No V			
Saturation Present? Yes	No x Depth (inches):	wellar	nd Hydrology Present?	Yes No _X_			
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	enitoring wall perial photos pre-	vious inspections) if	ovojloblo:				
Describe Recorded Data (Siteath gauge, mo	Millothing well, alerial priolos, pre-	vious irispections), ii	avaliable.				
Remarks:							

VEGETATION – Use scientific names of plants. Sampling Point: A-8 upl Absolute Indicator Dominant Tree Stratum (Plot size: 30') % Cover Species? Status **Dominance Test worksheet:** 1. **Number of Dominant Species** 2. That Are OBL, FACW, or FAC: 0 (A) 3. Total Number of Dominant 4. Species Across All Strata: 1 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 0.0% (A/B) Prevalence Index worksheet: =Total Cover Total % Cover of: Multiply by: Sapling/Shrub Stratum (Plot size: 15') OBL species x 1 = **FACW** species 10 x 2 = 2. FAC species 5 x 3 = 15 97 x 4 = 3. FACU species 388 4. UPL species 0 x 5 = 5. Column Totals: 112 (A) Prevalence Index = B/A = 3.78 6. **Hydrophytic Vegetation Indicators:** 7. 1 - Rapid Test for Hydrophytic Vegetation 2 - Dominance Test is >50% Herb Stratum (Plot size: 5') Poa pratensis Yes **FACU** 3 - Prevalence Index is ≤3.01 5 4 - Morphological Adaptations¹ (Provide supporting 2. No FAC Galium boreale data in Remarks or on a separate sheet) 3. Mentha arvensis 10 No **FACW** 5 4. Plantago lanceolata No **FACU** Problematic Hydrophytic Vegetation¹ (Explain) 5. Taraxacum officinale No **FACU** ¹Indicators of hydric soil and wetland hydrology must 6. be present, unless disturbed or problematic. 7. **Definitions of Vegetation Strata:** 8. Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless 112 =Total Cover of size, and woody plants less than 3.28 ft tall. Woody Vine Stratum (Plot size: 30' Woody vines - All woody vines greater than 3.28 ft in 1. height. 2. Hydrophytic 3. Vegetation Yes ___ Present? No X =Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

SOIL Sampling Point A-8 upl

Depth	ription: (Describe to Matrix	tne dep		u ment ti x Featur		itor or co	onfirm the absence o	it indicators.)	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-15	10YR 3/2	95	10YR 5/6	5	<u> </u>	<u>M</u>	Sandy	Prominent redox cond	centrations
					<u> </u>				
				_					
					_				
1Tune: C=Co	neantration D=Denle	tion RM=	-Poduced Matrix M		———		² l ocation: P	DIDoro Lining M=Matrix	
Type: C=Col	ncentration, D=Deple ndicators:	tion, RM=			ked Sand	l Grains.		PL=Pore Lining, M=Matrix or Problematic Hydric S	•
	ipedon (A2)	-	Dark Surface (S	w Surfa	ce (S8) (I	LRR R,	Coast P	uck (A10) (LRR K, L, MLI rairie Redox (A16) (LRR	K, L, R)
Black His Hydrogen	itic (A3) n Sulfide (A4)	_	MLRA 149B) Thin Dark Surfa	,) (LRR R	, MLRA 1		ucky Peat or Peat (S3) (L ue Below Surface (S8) (LI	
	Layers (A5)	-	High Chroma S					rk Surface (S9) (LRR K, I	-
	Below Dark Surface (rk Surface (A12)	(A11) -	Loamy Mucky I Loamy Gleyed			RK,L)		nganese Masses (F12) (L nt Floodplain Soils (F19) (-
	odic (A17)	-	Depleted Matrix		1 2)			ent Material (F21) (outsi	
	A 144A, 145, 149B)	-	Redox Dark Su		. 6)			allow Dark Surface (F22)	
	ucky Mineral (S1)	-	Depleted Dark		-			Explain in Remarks)	
	eyed Matrix (S4)	-	Redox Depress					explain in Romano)	
X Sandy Re		-	Marl (F10) (LR		<i>J)</i>		³ Indicate	ors of hydrophytic vegetat	tion and
	Matrix (S6)	-	Red Parent Ma		21) (MLF	RA 145)	wetlar	nd hydrology must be pressible and hydrology must be pressible and the problemation of	sent,
Restrictive L	ayer (if observed):								
Depth (in							Hydric Soil Presei	nt? Yes X	No
Remarks:							.,		

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region

See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R

OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Syracuse Hancock Internation	al Airport	City/County: Salina/	Onondaga	Sampling Date: 11/7/23			
Applicant/Owner: Syracuse Regional Air	rport Authority		State: NY	Sampling Point: forested upl			
Investigator(s): N. Frazer & C. Scrivner		Section, To	——— wnship, Range:				
Landform (hillside, terrace, etc.): flat	Local re	elief (concave, conve	ex, none): none	Slope %: 0			
Subregion (LRR or MLRA): LRR L	Lat: 43.115469		-76.129874	Datum: WGS84			
Soil Map Unit Name: Na-Naumburg loamy f		== 5	NWI classification:				
Are climatic / hydrologic conditions on the sit		Vac v		, explain in Remarks.)			
		Yes X	`				
Are Vegetation, Soil, or Hydro			nal Circumstances" pres				
Are Vegetation, Soil, or Hydro			d, explain any answers i	•			
SUMMARY OF FINDINGS – Attach	site map showing sam	pling point loca	tions, transects, ir	nportant features, etc.			
Hydrophytic Vegetation Present?	Yes No X	Is the Sampled A	rea				
Hydric Soil Present?	Yes No X	within a Wetland	? Yes	No <u>X</u>			
Wetland Hydrology Present?	Yes No X	If yes, optional We	etland Site ID:				
Remarks: (Explain alternative procedures h							
Successional northern hardwoods- northwe	st corner of project area.						
HYDROLOGY							
Wetland Hydrology Indicators:				minimum of two required)			
Primary Indicators (minimum of one is requi		20/	Surface Soil Crack				
Surface Water (A1) High Water Table (A2)	Water-Stained Leaves (B Aquatic Fauna (B13)	39) Drainage Patterns (B10) Moss Trim Lines (B16)					
Saturation (A3)	Marl Deposits (B15)						
Water Marks (B1)	Hydrogen Sulfide Odor (0	C1) Dry-Season Water Table (C2) Crayfish Burrows (C8)					
Sediment Deposits (B2)	Oxidized Rhizospheres o	•	<u> </u>	on Aerial Imagery (C9)			
Drift Deposits (B3)	Presence of Reduced Iro		Stunted or Stresse	= : : :			
Algal Mat or Crust (B4)	Recent Iron Reduction in	` '	Geomorphic Positi	` '			
Iron Deposits (B5)	Thin Muck Surface (C7)	· / — · · / · · · · · · · · · · · · · ·					
Inundation Visible on Aerial Imagery (B		,					
Sparsely Vegetated Concave Surface (I	· —	,	FAC-Neutral Test				
Field Observations:							
Surface Water Present? Yes	No x Depth (inches):						
Water Table Present? Yes	No x Depth (inches):						
Saturation Present? Yes	No x Depth (inches):	Wetlan	d Hydrology Present?	Yes No _X_			
(includes capillary fringe)							
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, pre	vious inspections), if	available:				
Remarks:							
Кепатку.							

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	<u> </u>			
ree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:			
. Prunus serotina	25	Yes	FACU	Number of Dominant Species			
Populus tremuloides	40	Yes	FACU	That Are OBL, FACW, or FAC:1 (A)			
3. Acer saccharum	5	No	FACU	Total Number of Dominant			
				Species Across All Strata: 9 (B)			
i.				Bound of Bourin and On a disc			
).				Percent of Dominant Species That Are OBL, FACW, or FAC: 11.1% (A/B)			
·				Prevalence Index worksheet:			
	70	=Total Cover		Total % Cover of: Multiply by:			
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0			
. Prunus serotina	2	No	FACU	FACW species 0 x 2 = 0			
Populus tremuloides	20	Yes	FACU	FAC species 24 x 3 = 72			
3. Quercus rubra	2	No	FACU	FACU species 161 x 4 = 644			
. Rhamnus cathartica	3	No	FAC	UPL species 11 x 5 = 55			
Lonicera morrowii	35	Yes	FACU	Column Totals: 196 (A) 771 (B)			
i. Rhus typhina	8	No	UPL	Prevalence Index = B/A = 3.93			
Cornus racemosa	15	No	FAC	Hydrophytic Vegetation Indicators:			
	94	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation			
lerb Stratum (Plot size:5')				2 - Dominance Test is >50%			
. Lonicera morrowii	8	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹			
Solidago altissima	10	Yes	FACU	4 - Morphological Adaptations ¹ (Provide supporti			
Phytolacca americana	5	Yes	FACU	data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain)			
i				¹ Indicators of hydric soil and wetland hydrology must			
).				be present, unless disturbed or problematic.			
,				Definitions of Vegetation Strata:			
3				Tree – Woody plants 3 in. (7.6 cm) or more in			
)				diameter at breast height (DBH), regardless of height.			
0				Sapling/shrub – Woody plants less than 3 in. DBH			
1				and greater than or equal to 3.28 ft (1 m) tall.			
2				Herb – All herbaceous (non-woody) plants, regardless			
	23	=Total Cover		of size, and woody plants less than 3.28 ft tall.			
Voody Vine Stratum (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in			
. Toxicodendron radicans	6	Yes	FAC	height.			
2. Vitis aestivalis	3	Yes	FACU	The described in			
J				Hydrophytic Vegetation			
l				Present? Yes No X			
	9	=Total Cover					

VEGETATION Continued – Use scientific names of plants.

Tree Stratum	Absolute % Cover	Dominant Species 2	Indicator	Definitions of Variation Strate.
<u>Tree Stratum</u>	% Cover	Species?	Status	Definitions of Vegetation Strata:
8. 9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				Sapling/shrub – Woody plants less than 3 in. DBH
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				Herb – All herbaceous (non-woody) plants, regardless
13				of size, and woody plants less than 3.28 ft tall.
14				Woody vines - All woody vines greater than 3.28 ft in
		=Total Cover		height.
Sapling/Shrub Stratum				
8. Rubus allegheniensis	6	No	FACU	
9. Rubus occidentalis	3	No	UPL	
10.				
11.				
12.				
13.				
14.				
	94	=Total Cover		
Herb Stratum				
13				
15.				
15				
16.				
17.				
18				
19 20.				
21.				
22.				
23.				
24		-Total Cause		
W 1 M 20 4	23	=Total Cover		
Woody Vine Stratum				
5.				
6.				
7.				
8				
	9	=Total Cover		
Remarks: (Include photo numbers here or on a separate	rate sheet.)			

Sampling Point: __forested upl

SOIL Sampling Point forested upl

Profile Desc Depth	ription: (Describe to Matrix	o the de		ıment tl x Featur		tor or co	confirm the absence of indicators.)		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture Remarks		
0-3	10YR 3/3	100					Sandy		
2 15	10VP 2/2	100					Sandy		
3-15	10YR 2/2	100					Sandy		
¹ Type: C=Co	oncentration, D=Deple	etion, RM	1=Reduced Matrix, N	IS=Mas	ked Sand	l Grains.	. ² Location: PL=Pore Lining, M=Matrix.		
Hydric Soil I							Indicators for Problematic Hydric Soils ³ :		
Histosol			Dark Surface (S		(00) (2 cm Muck (A10) (LRR K, L, MLRA 149B)		
	ipedon (A2)		Polyvalue Belo		ce (S8) (I	LRR R,	Coast Prairie Redox (A16) (LRR K, L, R)		
Black His			MLRA 149B)	,	(I DD D	MI DA 1	5 cm Mucky Peat or Peat (S3) (LRR K, L, R		
	n Sulfide (A4) Layers (A5)		Thin Dark Surfa High Chroma S		-		149B) — Polyvalue Below Surface (S8) (LRR K, L) Thin Dark Surface (S9) (LRR K, L)		
	Below Dark Surface	(A11)	Loamy Mucky I	-			Iron-Manganese Masses (F12) (LRR K, L, F		
	rk Surface (A12)	(, , , ,	Loamy Gleyed			, _/	Piedmont Floodplain Soils (F19) (MLRA 149		
	podic (A17)		Depleted Matrix		,		Red Parent Material (F21) (outside MLRA 1		
	A 144A, 145, 149B)		Redox Dark Su		⁻ 6)		Very Shallow Dark Surface (F22)		
Sandy M	ucky Mineral (S1)		Depleted Dark	Surface	(F7)		Other (Explain in Remarks)		
	leyed Matrix (S4)		Redox Depress	ions (F	8)		_		
	edox (S5)		Marl (F10) (LR	-			³ Indicators of hydrophytic vegetation and		
Stripped	Matrix (S6)		Red Parent Material (F21) (MLRA 145)			RA 145)	wetland hydrology must be present,		
Dantui ativa I							unless disturbed or problematic.		
Type:	-ayer (if observed): none	,							
		.							
Depth (ir	nches):						Hydric Soil Present? Yes No _X		
Remarks:									

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region

See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R

OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Syracuse Hancock Internationa	al Airport	City/County: Salina/	Onondaga	Sampling Date: 11/7/23			
Applicant/Owner: Syracuse Regional Airp	port Authority		State: NY	Sampling Point: Shrubland upl			
Investigator(s): N. Frazer & C. Scrivner		Section, To	wnship, Range:				
Landform (hillside, terrace, etc.): flat	Local re	elief (concave, conve	ex. none): none	Slope %: o			
Subregion (LRR or MLRA): LRR L	Lat: 43.115438		-76.135093	 Datum: WGS84			
Soil Map Unit Name: Na- Naumburg loamy fi		== \$	NWI classification:				
Are climatic / hydrologic conditions on the site		Yes x		explain in Remarks.)			
			` ` `	,			
Are Vegetation, Soil, or Hydrol			nal Circumstances" pres				
Are Vegetation, Soil, or Hydrol			d, explain any answers in	•			
SUMMARY OF FINDINGS – Attach	site map showing samp	pling point loca	tions, transects, in	nportant features, etc.			
Hydrophytic Vegetation Present?	Yes No X	Is the Sampled A	rea				
Hydric Soil Present?	Yes No X	within a Wetland	? Yes	No X			
Wetland Hydrology Present?	Yes No X	If yes, optional We	etland Site ID:				
Remarks: (Explain alternative procedures he							
Successional shrubland-northwest corner of p	project area.						
HYDROLOGY							
Wetland Hydrology Indicators:				minimum of two required)			
Primary Indicators (minimum of one is require			Surface Soil Cracks				
Surface Water (A1)	Water-Stained Leaves (B	39)	Drainage Patterns				
—— High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)					
Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)					
—— Water Marks (B1)	Hydrogen Sulfide Odor (C	•	Crayfish Burrows (0	,			
Sediment Deposits (B2)	Oxidized Rhizospheres or			on Aerial Imagery (C9)			
— Drift Deposits (B3)	Presence of Reduced Iron	` '	Stunted or Stressed				
Algal Mat or Crust (B4)	Recent Iron Reduction in						
Iron Deposits (B5)	Thin Muck Surface (C7)						
Inundation Visible on Aerial Imagery (B7)	· — · · · · ·	(s)	Microtopographic R	, ,			
Sparsely Vegetated Concave Surface (B	·8)		FAC-Neutral Test (D5)			
Field Observations:							
Surface Water Present? Yes	No x Depth (inches):						
Water Table Present? Yes	No x Depth (inches):						
Saturation Present? Yes	No x Depth (inches):	Wetlar	d Hydrology Present?	Yes No _X_			
(includes capillary fringe)							
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, prev	vious inspections), it	available:				
Remarks:							
Nemans.							

VEGETATION – Use scientific names of plants.

Tree Stratum (Plot size:30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata:4(B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC:(A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size:)				OBL species0 x1 =0
1. Populus tremuloides	55	Yes	FACU	FACW species 0 x 2 = 0
2. Cornus racemosa	15	No	FAC	FAC species15 x 3 =45
3. Lonicera morrowii	15	No	FACU	FACU species 90 x 4 = 360
4. Rhus typhina	8	No	UPL	UPL species13 x 5 =65
5. Rubus allegheniensis	5	No	FACU	Column Totals: 118 (A) 470 (B)
6. Rubus occidentalis	5	No	UPL	Prevalence Index = B/A = 3.98
7				Hydrophytic Vegetation Indicators:
	103	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size:5')				2 - Dominance Test is >50%
1. Lonicera morrowii	5	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Solidago altissima	5	Yes	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Rubus allegheniensis	5	Yes	FACU	data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				1 In disease of budging of land westered budgetons would
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Trans. We advantage of a (7.0 cm) an arranging
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				
11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.				
	15	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				
3				Hydrophytic Vegetation
4				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			
	,			

Sampling Point: Shrubland upl

SOIL Sampling Point_Shrubland upl

Depth	ription: (Describe t Matrix	o the de	•	dox Featur		ator or co	omirm the absence	DI INGIC	ators.)		
(inches)	Color (moist)	%	Color (moist)	%_	Type ¹	Loc ²	Texture		Rem	narks	
0-3	10YR 3/3	100					Sandy				
3-15	10YR 2/2	100					Sandy				
1- 0.0							21				
Hydric Soil I	oncentration, D=Deple	etion, Riv	/I=Reduced Matrix	, MS=Mas	ked San	d Grains.			e Lining, M=N		
Histosol			Dark Surface	e (S7)					0) (LRR K, L		
	oipedon (A2)		Polyvalue Be		ce (S8) (LRR R.			edox (A16) (
Black His			MLRA 149		(- / ·	,			eat or Peat (S		
	n Sulfide (A4)		Thin Dark Sเ	urface (S9) (LRR F	R, MLRA 1		-	w Surface (S		
Stratified	l Layers (A5)		High Chroma	a Sands (S	S11) (LR	R K, L)	Thin Da	ark Surfa	ace (S9) (LR	R K, L)	
	l Below Dark Surface	(A11)	Loamy Muck	y Mineral	(F1) (LR	RK, L)	Iron-Ma	anganes	e Masses (F	12) (LRR K	(, L, R)
Thick Da	ark Surface (A12)		Loamy Gleye	ed Matrix ((F2)				dplain Soils (
			Depleted Ma						terial (F21) (-RA 145)
			Redox Dark						ark Surface	(F22)	
	lucky Mineral (S1)		Depleted Da				Other (∟xplain	in Remarks)		
	edox (S5)		Redox Depre	-	8)		³ Indica	tore of h	vdrophytic ve	agetation ar	nd
<u> </u>			Red Parent I		21) (MI	RA 145)	³ Indicators of hydrophytic vegetation and wetland hydrology must be present,				iu
Stripped Matrix (30)				, , ,					disturbed or problematic.		
Restrictive L	_ayer (if observed):								· ·		
Type:	none	Э									
Depth (ir	nches):						Hydric Soil Prese	ent?	Yes	No	X
Remarks:											
Nemains.											

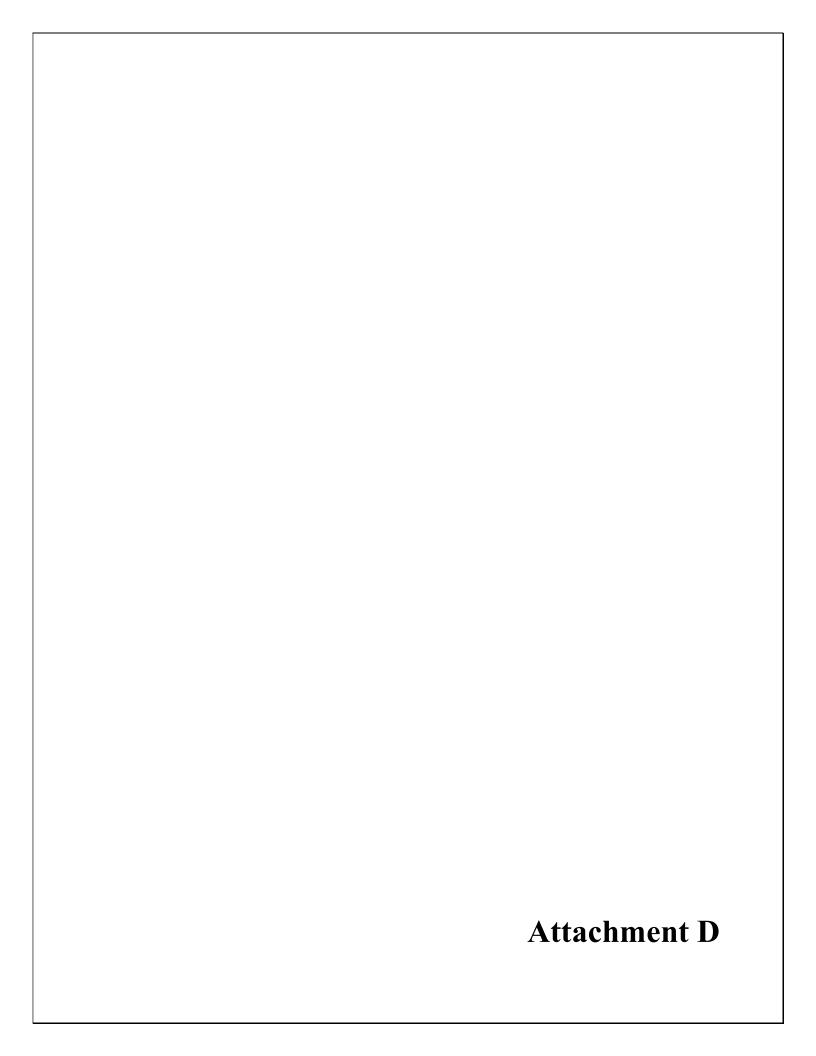


Photo 1-Wetland A facing northeast.

Photo 2-Wetland A soils.

Photo 3-Upland A facing northwest.

Photo 4-Upland A soils.

Photo 5-Successional northern hardwoods facing east.

Photo 6- Successional northern hardwoods soils.

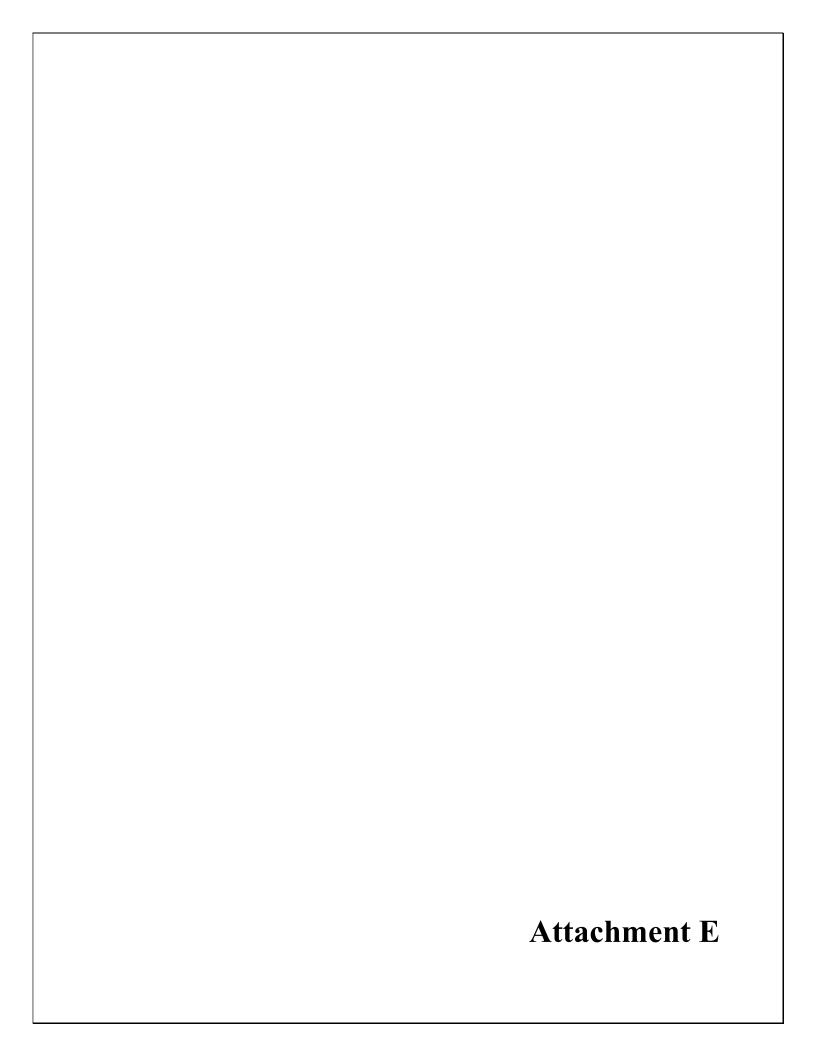


Photo 7-Successional shrubland facing west.

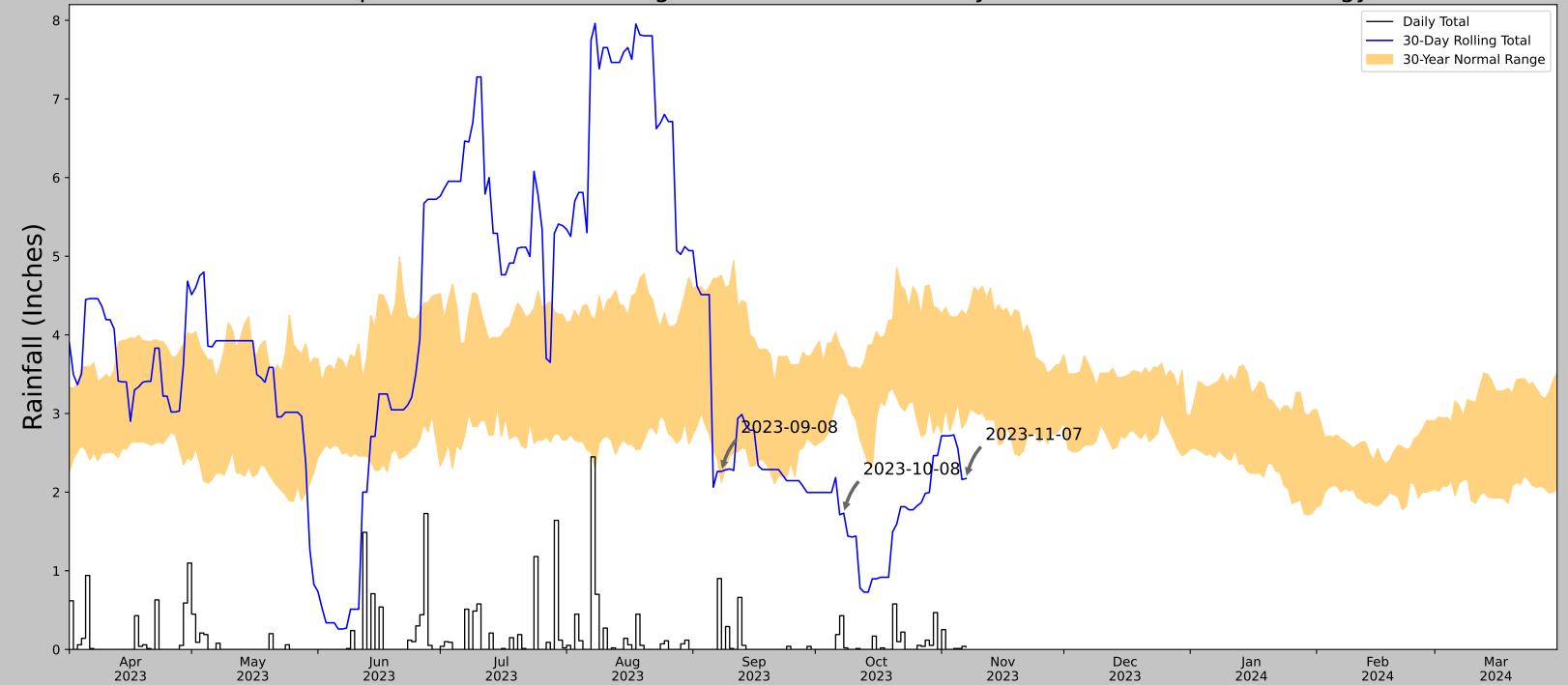
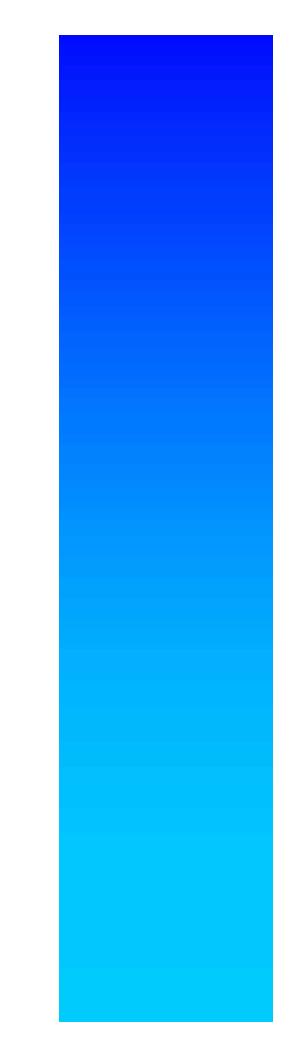


Photo 8- Successional shrubland soils.

Antecedent Precipitation vs Normal Range based on NOAA's Daily Global Historical Climatology Network

Coordinates	43.113783, -76.127722
Observation Date	2023-11-07
Elevation (ft)	415.116
Drought Index (PDSI)	Mild wetness (2023-10)
WebWIMP H ₂ O Balance	Wet Season


30 Days Ending	30 th %ile (in)	70 th %ile (in)	Observed (in)	Wetness Condition	Condition Value	Month Weight	Product
2023-11-07	2.897638	4.248425	2.173228	Dry	1	3	3
2023-10-08	3.245669	3.778347	1.732284	Dry	1	2	2
2023-09-08	2.122441	4.759449	2.26378	Normal	2	1	2
Result							Drier than Normal - 7

Figures and tables made by the Antecedent Precipitation Tool Version 2.0

Developed by: U.S. Army Corps of Engineers and U.S. Army Engineer Research and Development Center

Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days Normal	Days Antecedent
SYRACUSE HANCOCK INTL AP	43.1111, -76.1039	410.105	1.216	5.011	0.553	11347	89
SUNY ESF SYRACUSE	43.0344, -76.1344	568.898	5.519	158.793	3.36	4	0
SYRACUSE 2.7 S	43.0015, -76.1395	430.118	7.783	20.013	3.658	0	1
BREWERTON LOCK 23	43.2386, -76.1964	376.969	9.966	33.136	4.815	1	0

